با همکاری انجمن هیدرولیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم و مهندسی آب،دانشکده کشاورزی،دانشگاه بیرجند،بیرجند،ایران

2 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

3 دانشجوی کارشناسی ارشد منابع آب، دانشگاه بیرجند، ایران

4 دانشیار گروه علوم و مهندسی آب، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند.

10.22077/jaaq.2025.10067.1123

چکیده

تغییر اقلیم به عنوان یکی از مهم‌ترین چالش‌های زیست‌محیطی قرن بیست و یکم، اثرات گسترده‌ای بر دمای کره زمین دارد در پژوهش حاضر به منظور بازتولید متغیر دمای بیشینه، از اطلاعات دمای ایستگاه هواشناسی طبس در بازه سال‌های 1990 تا پایان سال 2014 د مقیاس ماهانه استفاده شد به طوری که سال‌های 1990 تا 2007 برای بخش واسنجی و سال‌های 2008 تا 2014 برای بخش اعتبارسنجی درنظرگرفته شد.به‌منظور بررسی متغیر دمای بیشینه، از روش اصلاح اریبی مبتنی بر نگاشت چارکی با استفاده از کدنویسی در محیط نرم‌افزار R و به کمک بسته نرم‌افزاری Qmap بهره گرفته شد.برای ارزیابی عملکرد مدل‌ها نیز از شاخص‌های آماری RMSE و KGE استفاده گردید و مدل برتر از طریق روش وزن‌دهی انتخاب شد.در این راستا، خروجی دو مدل اقلیمی جهانی IPSL-CM6A-LR و MPI-ESM1-2-HR از پروژه‌های CMIP6 (داده‌های خام) و ISIMIP (داده‌های تصحیح‌اریبی‌شده) مورد تحلیل قرار گرفت و عملکرد آن‌ها در بازتولید دمای بیشینه ارزیابی و مقایسه گردید. نتایج نشان دادکه مدل‌های زیرمجموعه ISIMIP نسبت به CMIP6 عملکرد بهتری از خود نشان داده است. بر همین اساس، مدل برتر ISIMIP برای شبیه‌سازی تغییرات دمای بیشینه در دوره آتی 2030 تا 2050 تحت سناریوی SSP5.8.5 به کار گرفته شد.نتایج این شبیه‌سازی‌ها نشان از تداوم روند افزایشی دمای بیشینه در منطقه بوده که پیامدهای جدی همچون افزایش تنش‌های حرارتی ، افزایش تبخیر و تعرق و کاهش تغذیه آبخوان و در نهایت افت سطح آب زیرزمینی را در پی خواهد داشت. این پژوهش بر اهمیت بهره‌گیری از مدل‌های دقیق در مطالعات اقلیمی محلی، به‌ویژه در مناطق حساس، تاکید دارد

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analyzing the Capability of CMIP6 and ISIMIP Models in Forecasting Maximum Temperature (Case Study: Tabas Meteorological Station)

نویسندگان [English]

  • Seydezahra Hoseini 1
  • Mohammad Fouladi Nasrabad 2
  • Amir Hossein Ramezani Freez 3
  • Mehdi Dastourani 4

1 Water Science and Engineering, Faculty of Agriculture, Birjand University, Birjand, Iran

2 Department of Water Science and Engineering, Faculty of Agriculture, Birjand University, Birjand, Iran

3 M.Sc. Student in Water Resources Engineering, University of Birjand, Iran

4 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.

چکیده [English]

Climate change, as one of the most significant environmental challenges of the 21st century, has extensive impacts on global temperature. In the present study, in order to reproduce the maximum temperature variable, monthly maximum temperature data from the Tabas meteorological station for the period 1990–2014 were used. The years 1990–2007 were considered for calibration and 2008–2014 for validation. To analyze the maximum temperature, a bias correction method based on quantile mapping was applied using coding in the R software environment with the help of the Qmap package. The performance of the models was evaluated using the statistical indices RMSE and KGE, and the superior model was selected through a weighting approach. In this regard, the outputs of two global climate models, IPSL-CM6A-LR and MPI-ESM1-2-HR, from the CMIP6 project (raw data) and the ISIMIP project (bias-corrected data) were analyzed, and their performance in reproducing maximum temperature was assessed and compared. The results indicated that ISIMIP models performed better than those of CMIP6. Accordingly, the superior ISIMIP model was employed to simulate changes in maximum temperature for the future period 2030–2050 under the SSP5-8.5 scenario. The results of these simulations revealed a continuing increasing trend in maximum temperature in the region, leading to serious consequences such as intensified heat stress, increased evapotranspiration, reduced aquifer recharge, declining groundwater levels, and more severe droughts. This study highlights the importance of utilizing accurate models in local climate studies, especially in vulnerable regions

کلیدواژه‌ها [English]

  • Climate change
  • Emission scenario
  • Bias correction
  • Global climate models
Abdolalizadeh, F., Mohammad Khorshiddoust, A., and Jahanbakhsh, S. (2022). Assessment of the performance of the CMIP6 model for the analysis of temperature and precipitation in the Urmia Lake basin. Climate Change Research, 3(11), 17-30. doi: 10.30488/ccr.2022.361233.1093. (In Persian).
Amirabadizadeh, M., Yaghoobzadeh, M., Hashemi, S., & Khozaymehnezhad, H. (2019). Assessment of linear and data-driven models in the downscaling of precipitation and temperature in South Khorasan Province. Journal of Meteorology and Atmospheric Science, 2(1), 68-82. (In Persian).
Ansari, S., Dehban, H., Zareian, M., and Farokhnia, A. (2022). Investigation of temperature and precipitation changes in Iran's basins in the next 20 years based on the output of the CMIP6 model. Iranian Water Research Journal, 16(1), 11-24. doi: 10.22034/iwrj.2022.11204. (In Persian).
Dowlatabadi, S., Amirabadizadeh, M., and Zarei, M. (2022). Evaluation of WetSpass-M Model for Estimation of Hydrological Response of Neyshabur-Rookh Watershed to Climate Change of Future Years. Water and Soil, 36(5), 629-644. doi: 10.22067/jsw.2022.78598.1199. (In Persian).
Fallah-Ghalhari, G., Shakeri, F., & Dadashi-Roudbari, A. (2019). Impacts of climate change on the maximum and minimum temperatures in Iran. Theoretical and Applied Climatology138(3), 1539-1562. (In Persian).
Fouladi Nasrabad, M., Amirabadizadeh, M., and Dastourani, M. (2024). Performance Evaluation of Two General Circulation Models for Downscaling Average Temperature in Birjand County. Integrated Watershed Management, 4(1), 30-45. doi: 10.22034/iwm.2024.2013786.1109. (In Persian).
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390.
Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). Decomposition of the mean-squared error and NSE performance criteria: Implications for improving hydrological modeling. Journal of Hydrology, 377(1). 80-91. (In Persian).
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Iranshahi, M., Ebrahimi, B., Yousefi, H., and Moridi, A. (2023). Investigating the Effects of Climate Change on Temperature and Precipitation Using Neural Network and CMIP6 (Case Study: Aleshtar and Khorramabad Stations). Water and Irrigation Management, 12(4), 821-845. doi: 10.22059/jwim.2022.346796.1009.52. (In Persian).
Khajeh amiri, C., Khosravi, M., Tavousi, T., Hamidianpour, M., and kiani moghadam, M. (2022). An analysis of the output performance of CMIP6 climate models in comparison with the observational data of the Makran coast. Journal of Meteorology and Atmospheric Science, 5(1), 22-41. doi: 10.22034/jmas.2023.379448.1193 .(In Persian).
Lange, S. (2019a). Bias correction of climate model outputs for ISIMIP: A standardised approach. Earth System Dynamics Discussions, 10(1), 123–145.
Lange, S. (2020). ISIMIP3b bias adjustment methods. Geoscientific Model Development, 13(4), 1599–1612.
Zareian, M. (2022). Effects of Climate Change on Temperature and Precipitation in Yazd Province Based on Combined Output of CMIP6 Models, Journal of Hydrology and Soil Science, 26(2), 91-105. (In Persian).
Maraun, D. (2016). Reply to Comment on ‘Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue. Journal of Climate, 29(23), 8669-8671.‌
Mianabadi, A., Bateni, M. M., and Mohammadi, S. (2023). Projection of Change in the Distribution of Precipitation and Temperature Using Bias-Corrected Simulations of CMIP6 Climate Models (Case Study: Kerman Synoptic Station). Climate Change Research, 4(14), 65-84. doi: 10.30488/ccr.2023.399780.1139.(In Persian).
Pedersen, J. T. S., van Vuuren, D., Gupta, J., Santos, F. D., Edmonds, J., & Swart, R. (2022). IPCC emission scenarios: How did critiques affect their quality and relevance, 1990–2022. Global Environmental Change, 75, 10253.
Rahimzadeh, F., Asgari, A., & Fattahi, E. (2019). Trends in maximum and minimum temperature series in Iran. Theoretical and Applied Climatology. (In Persian).
Razzaghian, H., Shahedi, K., and Habib Nejad Roshan, M. (2017). Evaluation of the climate change effect on Babol-rood watershed runoff using the IHACRES model. Irrigation and Water Engineering, 7(2), 159-172. (In Persian).
Sharafati A. Nabaei S. and Shahid S. 2020. Spatial assessment of meteorological drought features over different climate regions in Iran. International Journal of Climatology. 40(3), 1864-1884. (In Persian).
Yang, Y., Jin, C., & Ali, S. (2020). Projection of heat wave in China under global warming targets of 1.5° C and 2° C by the ISIMIP models. Atmospheric Research, 244, 105057.‌
Zarrin, A., Dadashi-Rodbari, A., and Salehabadi, N. (2021). Projected temperature anomalies and trends in different climate zones in Iran based on CMIP6. Iranian Journal of Geophysics, 15(1), 35-54. doi: 10.30499/ijg.2020.249997.1292. (In Persian).
Zhang, X., Hua, L., Jiang, D. 2021. Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China, Atmospheric and Oceanic Science Letters, 15(11):1001.