In collaboration Iranian Hydraulic Association

Authors

1 PHD student of water Resource engineering ,Department of Water Engineering, University of Birjand, Birjand, Iran

2 Associate Professor, Department of Civil Engineering, University of Birjand, Birjand, Iran

3 Assistant Professor, Department of Water Engineering, University of Birjand, Birjand, Iran

Abstract

Sensitivity analysis is the basic process of modeling that determines how the variation in the output of the model can be attributed to variations of its input factors. In recent decades with the increase in simulation models and the complexity of these models due to increased variables, sensitivity analysis is an essential tool for understanding the role and significance of variables in the modeling process. There are different categorizations for a variety of sensitivity analysis methods, Depending on whether output variability is obtained by varying the inputs around reference (nominal) values, or across their entire feasible space, Sensitivity analysis is either referred to as local or global. Quantitative and qualitative sensitivity analysis and One-At-a-Time (OAT) and All-At-a-Time (AAT) methods are other divisions for a variety of sensitivity analysis methods. In this study, sensitivity analysis methods in simulation models were investigated and capability of GLUE method, a common method for uncertainty analysis based on the Monte Carlo simulations, was presented to analyze the sensitivity of groundwater model in a case study.

Keywords

Beven, K. 2001. Rainfall-runoff modelling: The primer. Wiley-Blackwell, England.
Beven, K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour. 16, 41e51.
Beven, K., and Binley, A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Processes. 6:279-298.
Beven, KJ., Freer, J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. Journal of Hydrolology 249:11–29. doi: 10.1016/S0022-1694(01)00421-8
Chu-Agor, M.L., Muñoz-Carpena, R., Kiker, G., Emanuelsson, A. and Linkov, I. 2011. Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses. Environmental Modelling & Software, 26(5), pp.593-604.
Clark, M.P., Kavetski, D. and Fenicia, F., 2011. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47(9).
Crosetto, M., Tarantola, S. and Saltelli, A., 2000. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, ecosystems & environment, 81(1), pp.71-79.
Degenring, D., Froemel, C., Dikta, G. and Takors, R., 2004. Sensitivity analysis for the reduction of complex metabolism models. Journal of Process Control, 14(7), pp.729-745.
Freer, J., Beven, K., and Ambroise, B. 1996. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour. Res. 32: 7. 2161–2173.
Gupta, H.V., Wagener, T. and Liu, Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes, 22(18)., 3802-3813.
Hill, M.C. and Tiedeman, C.R. 2006. Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons.
Howard, R.A., 1988. Decision analysis: practice and promise. Management science, 34(6), pp.679-695.
Izady, A., Davary, K., Alizadeh, A., Ziaei, A.N., Akhavan, S., Alipoor, A., Joodavi, A., and Brusseau, M.L. 2015. Groundwater conceptualization and modeling distributed SWAT-based recharge for semi-arid agricultural Neishaboor plain. Iran. Hydrogeol. J. 23: 1. 47-68.
Keesman, K., and van Straten, G. 1989. Identification and prediction propagation of uncertainty in models with bounded noise. Int. J. Control. 49: 6. 2259–2269.
Kleijnen, J., Helton, J., 1999a. Statistical analyses of scatterplots to identify important factors in large-scale simulations, 1: review and comparison of techniques. Reliab. Eng. Syst. Saf. 65 (2), 147e185.
 
Lidén, R. and Harlin, J., 2000. Analysis of conceptual rainfall–runoff modelling performance in different climates. Journal of hydrology, 238(3), pp.231-247.
Makowski, D., Wallach, D., and Tremblay, M. 2002. Using a Bayesian approach to parameter estimation: comparison of the GLUE and MCMC methods. Agronomie. 22:191–203.
Melching, C.S. 1995. Reliability estimation. Computer models of watershed hydrology, 69, p.118.
McKay, M.D., Beckman, R.J., and Conover, W.J. 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21: 2. 239–245.
Morse, B.S., Pohll, G., Huntington, J., and Rodrigues-Castillo, R. 2003. Stochastic capture zone analysis of arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology. Water Resour. Res. 39: 1151.
Muleta, M.K. and Nicklow, J.W. 2005. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology, 306(1), pp.127-145.
Nossent, J., Elsen, P. and Bauwens, W. 2011. Sobol’sensitivity analysis of a complex environmental model. Environmental Modelling & Software, 26(12), pp.1515-1525.
Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B. and Wagener, T. 2016. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, pp.214-232.
Powell, S., Baker, K. 1992. Management Science, the Art of Modeling with Spreadsheets, fourth ed. John Wiley & Sons, Hoboken, NJ, USA
Rakovec, O., Hill, M.C., Clark, M.P., Weerts, A.H., Teuling, A.J. and Uijlenhoet, R. 2014. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resources Research, 50(1), pp.409-426.
Rahnama, B., Naseri, M., Zahraie, B. 2014. Identifying Optimized structure and uncertainty analysis of monthly Water Balance Model. IWRJ. 8:14. 77-86. (In Persian)
Ratto, M., Tarantola, S. and Saltelli, A. 2001. Sensitivity analysis in model calibration: GSA-GLUE approach. Computer Physics Communications, 136(3), pp.212-224.
Razavi, S. and Gupta, H.V. 2015. What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models. Water Resources Research, 51(5), pp.3070-3092.
Romanowicz, R., Beven, K.J., and Tawn, J. 1994. Evaluation of predictive uncertainty in non-linear hydrological models using a Bayesian approach. P 297-317, In: V. Barnettand and K.F. Turkman(eds.), Statistics for the Environment: Water Related Issues. Wiley, NewYork.
Ruano, M.V., Ribes, J., Seco, A. and Ferrer, J. 2012. An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors. Environmental Modelling & Software, 37, pp.103-109.
Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. 2004. Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,Tarantola, S. 2008. Global Sensitivity Analysis. The Primer. Wiley
Spear, R.C. and Hornberger, G.M. 1980. Eutrophication in Peel Inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Research, 14(1), pp.43-49.
Tung, Y.K., Yen, B.C. 2006. Hydrosystems Engineering Uncertainty Analysis. McGraw-Hill Civil Engineering Series, ASCE Press, New York.
Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M. and Srinivasan, R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of hydrology, 324(1), pp.10-23.
Young, P.C., Spear, R.C., Hornberger, G.M. 1978. Modeling badly defined systems: some further thoughts. In: Proceedings SIMSIG Conference, Canberra, pp. 24e32.