In collaboration Iranian Hydraulic Association

Document Type : Original Article

Author

Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran.

10.22077/jaaq.2025.10603.1134

Abstract

Despite the importance of knowing about soil properties in agricultural production, information regarding soil properties in pistachio and jujube orchards is limited. Therefore, the aim of this study is to evaluate the chemical and biological properties of the soil around the roots of pistachio and jujube trees in the orchards of Birjand plain. To determine the properties of the soil, samples were prepared from the rhizosphere of 10 pistachio and jujube orchards in the cities of Birjand and Khusf, and their various properties, including texture, EC, pH, organic matter, available potassium, bacterial population (BP), basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass carbon (MBC), were determined . The results showed that the chemical and biological indices of soil including EC, pH, OC, available K, BP, BR, SIR and MBC varied in the range of 4.28-9.54 dS/m, 7.53-8.20, 0.11-0.51%, 215-340 mg/kg, 1.18×105-62.1×105 CFU/gr.soil, 0.09-0.21 mg CO₂/gr.soil.day, 0.33-1.18 mg CO₂/gr.soil.day and 0.15-1.35 mg C/100 gr.soil for pistachio trees and in the range of 5.41-11.0 dS/m, 7.50-8.2, 0.15-0.39%, 182-270 mg/kg, 0.79×104-8.40×104 CFU/gr.soil, 0.03-0.09 mg CO₂/gr.soil.day, 0.15-0.38 mg CO₂/gr.soil.day and 0.31-0.87 mg C/100 gr.soil for jujube trees, respectively. An inverse relationship between microbial activity and soil salinity is observed,. In the case of jujube, soils with higher salinity exhibited lower bacterial populations, respiration rates, and microbial biomass, highlighting the importance of managing salinity levels to maintain soil microbial health and fertility. This study highlights the significant role of organic matter in regulating soil microbial populations in the rhizospheres of pistachio and jujube trees.

Keywords

Abbas, G., Rehman, S., Siddiqui, M. H., Ali, H. M., Farooq, M. A., & Chen, Y. (2022). Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants, 11 (263). https://doi.org/10.3390/plants11030263.
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (p. 608). Academic Press.
Anderson, J. P. E., Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Soil respiration. In A. L. Page (Ed.), Methods of soil analysis. Part 2 (2nd ed., pp. 831–871). ASA and SSSA.
Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021). Plant- or microbial-derived? A review of the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, 108-189. https://doi.org/10.1016/j.soilbio.2021.108189
Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., & Hamidpour, M. (2015). Isolation and evaluation of plant growth-promoting indices of Pseudomonas fluorescens isolated from pistachio rhizosphere. Journal of Soil Biology, 2(2), 173-186. https://doi.org/10.22092/SBJ.2015.100867.(In Persian)
Azarmi-Atajan, F., Sayyari-Zohan, M. H., & Mirzaei, F. (2023). Evaluation of the growth and status of some nutrients in pistachio seedlings treated with phosphorus under different levels of irrigation water salinity. Journal of Horticulture and Postharvest Research, 6(3), 261-270. https://doi.org/10.22077/jhpr.2023.6271.1314.
Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487, 21-37. https://doi.org/10.1007/s11104-023-05960-5
Biswas, T., & Kole, S. C. (2017). Soil organic matter and microbial role in plant productivity and soil fertility. In T. Adhya, B. Mishra, K. Annapurna, D. Verma, & U. Kumar (Eds.), Advances in soil microbiology: Recent trends and prospects (Vol. 4, Microorganisms for Sustainability). Springer. https://doi.org/10.1007/978-981-10-7380-9_10.
Brar, G., Singh, S., Khezri, M., & Hadavi, F. (2022). Growth responses of pistachio rootstocks to irrigation water salinity. Acta Horticulturae, 1346, 767-774. https://doi.org/10.17660/ActaHortic.2022.1346.98.
Bünemann, K. L., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality- A critical review. Soil Biology and Biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030.
De Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms11(4), 1088. https://doi.org/10.3390/microorganisms11041088.
Dong, Y., Zhang, J., Chen, R., Zhong, L., Lin, X., & Feng, Y. (2022). Microbial community composition and activity in saline soils of coastal agro-ecosystems. Microorganisms, 10(4), 835. https://doi.org/10.3390/microorganisms10040835.
Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3–11. https://doi.org/10.1016/S0929-1393(00)00067-6.
Ghasemzadeh Ganjehie, M., Karimi, A., Zeinadini, A., & Khorassani, R. (2018). Relationship of soil properties with yield and morphological parameters of pistachio in geomorphic surfaces of Bajestan Playa, Northeastern Iran. Journal of Agricultural Science and Technology, 20, 417-432. Dor: 20.1001.1.16807073.2018.20.2.14.8
Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: Measurement and turnover. In E. A. Paul & J. N. Ladd (Eds.), Soil biochemistry (pp. 415–471). Marcel Dekker, Inc.
Kumar, A., & Verma, J. P. (2019). The role of microbes in improving crop productivity and soil health. In V. Achal & A. Mukherjee (Eds.), Ecological wisdom inspired restoration engineering (EcoWISE, pp. 1–14). Springer.  https://doi.org/10.1007/978-981-13-0149-0_14.
Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112(5), 3265-3277. https://doi.org/10.1002/agj2.20282.
Lecomte, S. M., Achouak, W., Abrouk, D., Heulin, T., Nesme, X., & Haichar, F. Z. (2018). Diversifying anaerobic respiration strategies to compete in the rhizosphere. Frontiers in Environmental Science, 6, 139. https://doi.org/10.3389/fenvs.2018.00139
Liu, Z., Jiao, X., Lu, S., Zhu, C., Zhai, Y., & Guo, W. (2019). Effects of winter irrigation on soil salinity and jujube growth in arid regions. PLOS ONE, 14(6), e0218622. https://doi.org/10.1371/journal.pone.0218622
Ma, F., Wang, C., Zhang, Y., Chen, J., Xie, R., & Sun, Z. (2022). Development of microbial indicators in ecological systems. International Journal of Environmental Research and Public Health, 19, 13888. https://doi.org/10.3390/ijerph192113888.
Mitra, D., Nayeri, F. D., Sansinenea, E., Ortiz, A., Bhatta, B. B., Adeyemi, N. O., … Panneerselvam, P. (2023). Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes. Journal of Plant Nutrition, 46(13), 3184–3220. https://doi.org/10.1080/01904167.2023.2191638.
Niu, B., Wang, W., Yuan, Zh., Sederoff, R. R., Sederoff, H., Chiang, V., & Borriss, R. (2020). Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Frontiers Microbiology, 11, 585404. https://doi.org/10.3389/fmicb.2020.585404.
Philippot, L., Chenu, C., Kappler, A., Rillig, M., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226–239.https://doi.org/10.1038/s41579-023-00980-5.
Qu, Y., Tang, J., Liu, B., Lyu, H., Duan, Y., Yang, Y., Wang, S., Li, Z. H. (2022). Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil regions. Scientific Reports, 12, 1314. https://doi.org/10.1038/s41598-022-05218-7.
Raza, T., Qadir, M. F., Khan, K. S., Eash, N. S., Yousuf, M., Chatterjee, S., Manzoor, R., Rehman, S. U., Oetting, J. N. (2023). Unraveling the potential of microbes in the decomposition of organic matter and the release of carbon in the ecosystem. Journal of Environmental Management, 344, 118529. https://doi.org/10.1016/j.jenvman.2023.118529.
Ren, Ch., Wang, T., Xu, Y., Deng, J., Zhao, F., Yang, G., Han, X., Feng, Y., Ren, G. (2018). Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. Forest Ecology and Management, 409, 170-178. https://doi.org/10.1016/j.foreco.2017.11.011.
Romero-Freire, A., Aragón, M. S., Garzón, F. M., & Peinado, F. M. (2016). Is soil basal respiration a good indicator of soil pollution? Geoderma, 263, 132-139. https://doi.org/10.1016/j.geoderma.2015.09.006.
Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Ivanova, E. A., Nikitin, D. A., & Semenov, V. M. (2025). Microbiological indicators for assessing the effects of agricultural practices on soil health: A review. Agronomy, 15(2), 335. https://doi.org/10.3390/agronomy15020335.
Solomon, W., Janda, T., & Molnár, Z. (2024). Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. Plant Physiology and Biochemistry, 206, 108290, https://doi.org/10.1016/j.plaphy.2023.108290.
Sparks, D. L. (1996). Methods of soil analysis. Part 3, chemical methods, Soil Science Society of America, Madison, Wisconsin, USA.
Tariq, A., Graciano, C., Sardans, J., Zeng, F., Hughes, A. C., Ahmed, Z., Ullah, A., Ali, S., Gao, Y., & Peñuelas, J. (2024). Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytologist, 242(3), 916-934.https://doi.org/10.1111/nph.19676.
Walkey, A., & Black, T. A. (1934). An examination of the Degtjareff method for determining organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37: 29-38.
Wang, H., Wang, Y., Kang, C., Wang, S., Zhang, Y., Yang, G., et al. (2022). Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science, 13, 1032480. https://doi.org/10.3389/fpls.2022.1032480.
Xing, Y., Wang, X., & Mustafa, A. (2025). Exploring the link between soil health and crop productivity. Ecotoxicology and Environmental Safety, 289, 117703. https://doi.org/10.1016/j.ecoenv.2025.117703.
Yuan, Y., Dai, X., Fu, X., Kou, L., Luo, Y., Jiang, L., & Wang, H. (2020). Differences in the rhizosphere effects among trees, shrubs, and herbs in three subtropical plantations and their seasonal variations. European Journal of Soil Biology, 100, 103218. https://doi.org/10.1016/j.ejsobi.2020.103218.
Zhang, L., Jiang, Q., Zong, J., Guo, H., Liu, J., & Chen, J. (2024). Effects of Supplemental Potassium on the Growth, Photosynthetic Characteristics, and
 Ion Content of Zoysia matrella under Salt Stress. Horticulturae10(1), 31. doi.org/10.3390/horticulturae10010031.