Abbas, G., Rehman, S., Siddiqui, M. H., Ali, H. M., Farooq, M. A., & Chen, Y. (2022). Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants, 11 (263). https://doi.org/10.3390/plants11030263.
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry (p. 608). Academic Press.
Anderson, J. P. E., Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Soil respiration. In A. L. Page (Ed.), Methods of soil analysis. Part 2 (2nd ed., pp. 831–871). ASA and SSSA.
Angst, G., Mueller, K. E., Nierop, K. G. J., & Simpson, M. J. (2021). Plant- or microbial-derived? A review of the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry, 156, 108-189. https://doi.org/10.1016/j.soilbio.2021.108189
Azarmi, F., Mozafari, V., Abbaszadeh Dahaji, P., & Hamidpour, M. (2015). Isolation and evaluation of plant growth-promoting indices of Pseudomonas fluorescens isolated from pistachio rhizosphere. Journal of Soil Biology, 2(2), 173-186. https://doi.org/10.22092/SBJ.2015.100867.(In Persian)
Azarmi-Atajan, F., Sayyari-Zohan, M. H., & Mirzaei, F. (2023). Evaluation of the growth and status of some nutrients in pistachio seedlings treated with phosphorus under different levels of irrigation water salinity. Journal of Horticulture and Postharvest Research, 6(3), 261-270. https://doi.org/10.22077/jhpr.2023.6271.1314.
Biswas, T., & Kole, S. C. (2017). Soil organic matter and microbial role in plant productivity and soil fertility. In T. Adhya, B. Mishra, K. Annapurna, D. Verma, & U. Kumar (Eds.), Advances in soil microbiology: Recent trends and prospects (Vol. 4, Microorganisms for Sustainability). Springer. https://doi.org/10.1007/978-981-10-7380-9_10.
Bünemann, K. L., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality- A critical review. Soil Biology and Biochemistry, 120, 105–125. https://doi.org/10.1016/j.soilbio.2018.01.030.
De Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088.
Dong, Y., Zhang, J., Chen, R., Zhong, L., Lin, X., & Feng, Y. (2022). Microbial community composition and activity in saline soils of coastal agro-ecosystems. Microorganisms, 10(4), 835. https://doi.org/10.3390/microorganisms10040835.
Ghasemzadeh Ganjehie, M., Karimi, A., Zeinadini, A., & Khorassani, R. (2018). Relationship of soil properties with yield and morphological parameters of pistachio in geomorphic surfaces of Bajestan Playa, Northeastern Iran. Journal of Agricultural Science and Technology, 20, 417-432. Dor: 20.1001.1.16807073.2018.20.2.14.8
Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil: Measurement and turnover. In E. A. Paul & J. N. Ladd (Eds.), Soil biochemistry (pp. 415–471). Marcel Dekker, Inc.
Kumar, A., & Verma, J. P. (2019). The role of microbes in improving crop productivity and soil health. In V. Achal & A. Mukherjee (Eds.), Ecological wisdom inspired restoration engineering (EcoWISE, pp. 1–14). Springer. https://doi.org/10.1007/978-981-13-0149-0_14.
Lecomte, S. M., Achouak, W., Abrouk, D., Heulin, T., Nesme, X., & Haichar, F. Z. (2018). Diversifying anaerobic respiration strategies to compete in the rhizosphere. Frontiers in Environmental Science, 6, 139. https://doi.org/10.3389/fenvs.2018.00139
Liu, Z., Jiao, X., Lu, S., Zhu, C., Zhai, Y., & Guo, W. (2019). Effects of winter irrigation on soil salinity and jujube growth in arid regions. PLOS ONE, 14(6), e0218622. https://doi.org/10.1371/journal.pone.0218622
Ma, F., Wang, C., Zhang, Y., Chen, J., Xie, R., & Sun, Z. (2022). Development of microbial indicators in ecological systems. International Journal of Environmental Research and Public Health, 19, 13888. https://doi.org/10.3390/ijerph192113888.
Mitra, D., Nayeri, F. D., Sansinenea, E., Ortiz, A., Bhatta, B. B., Adeyemi, N. O., … Panneerselvam, P. (2023). Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes. Journal of Plant Nutrition, 46(13), 3184–3220. https://doi.org/10.1080/01904167.2023.2191638.
Niu, B., Wang, W., Yuan, Zh., Sederoff, R. R., Sederoff, H., Chiang, V., & Borriss, R. (2020). Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Frontiers Microbiology, 11, 585404. https://doi.org/10.3389/fmicb.2020.585404.
Philippot, L., Chenu, C., Kappler, A., Rillig, M., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226–239.https://doi.org/10.1038/s41579-023-00980-5.
Qu, Y., Tang, J., Liu, B., Lyu, H., Duan, Y., Yang, Y., Wang, S., Li, Z. H. (2022). Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline–alkali soil regions. Scientific Reports, 12, 1314. https://doi.org/10.1038/s41598-022-05218-7.
Raza, T., Qadir, M. F., Khan, K. S., Eash, N. S., Yousuf, M., Chatterjee, S., Manzoor, R., Rehman, S. U., Oetting, J. N. (2023). Unraveling the potential of microbes in the decomposition of organic matter and the release of carbon in the ecosystem. Journal of Environmental Management, 344, 118529. https://doi.org/10.1016/j.jenvman.2023.118529.
Ren, Ch., Wang, T., Xu, Y., Deng, J., Zhao, F., Yang, G., Han, X., Feng, Y., Ren, G. (2018). Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. Forest Ecology and Management, 409, 170-178. https://doi.org/10.1016/j.foreco.2017.11.011.
Semenov, M. V., Zhelezova, A. D., Ksenofontova, N. A., Ivanova, E. A., Nikitin, D. A., & Semenov, V. M. (2025). Microbiological indicators for assessing the effects of agricultural practices on soil health: A review. Agronomy, 15(2), 335. https://doi.org/10.3390/agronomy15020335.
Solomon, W., Janda, T., & Molnár, Z. (2024). Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture. Plant Physiology and Biochemistry, 206, 108290, https://doi.org/10.1016/j.plaphy.2023.108290.
Sparks, D. L. (1996). Methods of soil analysis. Part 3, chemical methods, Soil Science Society of America, Madison, Wisconsin, USA.
Tariq, A., Graciano, C., Sardans, J., Zeng, F., Hughes, A. C., Ahmed, Z., Ullah, A., Ali, S., Gao, Y., & Peñuelas, J. (2024). Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytologist, 242(3), 916-934.https://doi.org/10.1111/nph.19676.
Walkey, A., & Black, T. A. (1934). An examination of the Degtjareff method for determining organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37: 29-38.
Wang, H., Wang, Y., Kang, C., Wang, S., Zhang, Y., Yang, G., et al. (2022). Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation. Frontiers in Plant Science, 13, 1032480. https://doi.org/10.3389/fpls.2022.1032480.
Yuan, Y., Dai, X., Fu, X., Kou, L., Luo, Y., Jiang, L., & Wang, H. (2020). Differences in the rhizosphere effects among trees, shrubs, and herbs in three subtropical plantations and their seasonal variations. European Journal of Soil Biology, 100, 103218. https://doi.org/10.1016/j.ejsobi.2020.103218.
Zhang, L., Jiang, Q., Zong, J., Guo, H., Liu, J., & Chen, J. (2024). Effects of Supplemental Potassium on the Growth, Photosynthetic Characteristics, and