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Extended abstract

Introduction

This study aims to develop a comprehensive, data-driven evaluation of
groundwater level dynamics in the Shahrood and Bastam aquifer system by
comparing the predictive performance of five machine learning
algorithms—XGBoost, CatBoost, Decision Tree (DT), Support Vector
Regression (SVR), and K-Nearest Neighbors (KNN). Motivated by the
persistent groundwater decline caused by excessive extraction, agricultural
expansion, and climatic variability, the research pursues three specific goals:
(i) integrate climatic drivers (precipitation and temperature), human-induced
factors (well and qanat abstraction), and agricultural return flow into a
unified predictive framework; (ii) quantify and compare the accuracy of
competing algorithms using MAE, RMSE, and correlation coefficient (r)
under an 80-20 train—test split; and (iii) identify the most reliable modeling
approach for supporting groundwater management, extraction regulation,
climate-impact assessment, and sustainability planning in arid and semi-arid
aquifer systems.
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Through this comparative evaluation, the study seeks to highlight the strengths and limitations of each
algorithm and deliver actionable insights for water-resource managers tasked with mitigating long-term
aquifer depletion

Materials and Methods

A 15-year monthly dataset (2000—2014) was assembled using observations from six precipitation stations,
three temperature stations, groundwater abstraction records from 591 operational wells and ganats, and
water-table measurements from 33 piezometric wells across the plain. Spatial averages of climatic
variables were computed using the Thiessen polygon method, ensuring representation of spatial
heterogeneity. The input matrix combines climatic, hydrological, and anthropogenic variables known to
influence groundwater fluctuations in the semiarid Shahrood aquifer. The five machine learning models
were calibrated under a systematic grid-search procedure to determine optimal hyperparameters. Model
performance was evaluated using MAE, RMSE, and r to capture both magnitude-based and pattern-based
predictive capability. This design enables fair assessment of contrasting modeling philosophies: tree-based
boosting (XGBoost, CatBoost), instance-based learning (KNN), margin-based regression (SVR), and
recursive partitioning (DT) under identical data and validation conditions

Results and Discussion

Groundwater levels showed a continuous declining trend over the study period, dropping from 1326.48 m
in 2000 to 1315.68 m in 2014, an overall decline of 10.8 m, averaging 0.77 m per year. This pattern
reflects the combined influence of insufficient recharge, reduced precipitation, rising temperatures, and
intensifying extraction for agriculture, domestic use, and industry.

The model comparison demonstrated the clear superiority of gradient boosting methods. CatBoost
achieved the lowest prediction error (MAE = 1.4029 m; RMSE = 1.9484 m), while XGBoost produced the
strongest linear agreement with observed water-table fluctuations (r = 0.8185). Both algorithms
outperformed classical models by a substantial margin, reducing RMSE by approximately 25-35%
relative to DT, SVR, and KNN. The Decision Tree model exhibited limited accuracy (RMSE =2.779 m; r
= 0.6701), reflecting its inability to generalize under nonlinear, multivariate interactions. SVR provided
slightly better pattern reproduction (r = 0.6903) but higher errors (RMSE = 2.6995), suggesting difficulty
in capturing nonlinearities and noise-driven variability. KNN performed the weakest (RMSE = 2.8617 m;
r = 0.5799), likely due to high sensitivity to noisy, heterogeneous hydro-climatic data. Overall, boosting
algorithms’ ensemble structure and capacity to model complex nonlinearities allowed them to reproduce
both long-term declining trends and short-term fluctuations more accurately than traditional learners. The
performance gap confirms that aquifer systems characterized by strong climatic—anthropogenic coupling
benefit from high-capacity, ensemble-based predictors.

Conclusion

The extended comparative analysis demonstrates that machine learning, particularly gradient boosting
algorithms, provides a reliable, scalable framework for modeling groundwater level changes in arid and
semi-arid regions. XGBoost and CatBoost consistently outperformed classical models, achieving lower
errors and higher correlation with observed groundwater levels. Their predictive strength arises from their
ability to capture nonlinear interactions among climatic variables, extraction rates, and return flows
interactions that simpler methods fail to fully represent.

The findings emphasize that boosting models can be integrated into groundwater monitoring systems to
inform extraction control, evaluate climate-change impacts, and support sustainable aquifer management.
These models offer practical value for policymakers by enabling early detection of critical declines and
providing operational decision support for regulating pumping and designing recharge interventions.
Limitations include the absence of land-use, soil, and hydraulic-property data, and the inability to
incorporate deep multi-temporal dependencies that recurrent networks (e.g., LSTM) could capture. Future
research should explore hybrid and deep-learning architectures, incorporate uncertainty quantification,
and expand datasets using remote-sensing inputs. Nevertheless, the main implication is clear: ensemble-
based machine learning is a powerful, cost-effective tool for predicting groundwater dynamics and
guiding sustainable water-resource planning in data-limited, climatically stressed aquifers.
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Table 2. Location and Usage Type of A Sample of Exploitation Wells.
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Table 3. Specifications of Piezometer Wells.
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Table 4. Performance of Machine Learning Models.
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0.7815 1.9484 1.4029 CatBoost
0.8185 1.9692 1.4897 XGBoost
0.6701 2.7790 1.8787 Decision Tree
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Fig 4. Chart of Evaluation Metrics For The Machine Learning Models Used in The Present Study.
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