Original Article

Journal of

Aquifer and Qanat & %

Autumn and Winter 2025, Vol. 6, No. 2, pp 25-40

d ) 10.22077/jaaq.2025.10220.1131

Analysis of Groundwater Salinity in the Caspian Sea Coasts Using

Meta-Heuristic Algorithms

Ebrahim Nohani™'"" | Hamidreza Babaali?>'"'| Reza Dehghani®

1. Assistant Professor, Department of Civil Engineering, Materials and Energy Research Center, Dez.C.,
Islamic Azad University, Dezful, Iran.
2. Associate Professor, Department of Civil Engineering, Islamic Azad University, Khorramabad branch,

Khorramabad, Iran.

3. PhD in Water Sciences and Engineering, Department of Soil Conservation and Watershed Management,
Lorestan Province Agriculture and Natural Resources Research and Education Center, Agricultural
Research, Education and Extension Organization, Khorramabad, Iran.

*Corresponding Author: ebrahim.nohani@iau.ac.ir

Submit Date
17 October 2025

Revise Date
29 November 2025

Accept Date
6 December 2025

Keywords:

Prediction,

Caspian Sea,
Groundwater Salinity,
Hybrid Modeling.

Extended abstract

Introduction

Groundwater, as one of the most vital sources of fresh water on Earth, plays
an irreplaceable role in supplying drinking water, as well as supporting
agricultural and industrial activities. However, rapid population growth,
climate change, and excessive exploitation have led to quantitative and
qualitative degradation of this precious resource. One of the most important
quality challenges in this regard is groundwater salinity, which may result
from factors such as seawater intrusion, dissolution of saline formations,
human activities, and geochemical changes. Excessive salinity makes water
unsuitable for various uses -especially agriculture- and can lead to soil
degradation and reduced crop productivity. Traditional methods for
monitoring salinity are typically based on field sampling and laboratory
analysis. Although accurate, these approaches are time-consuming, costly,
and limited in spatial and temporal coverage. Such limitations highlight the
existence of uncertainty and research gaps in conventional salinity
estimation methods, as they are mostly unable to model complex and
nonlinear relationships among hydrogeological parameters.
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In recent years, significant advances in artificial intelligence have turned machine
learning models into powerful tools for solving complex problems in
environmental sciences, including hydrology. Therefore, this study focuses on
developing and applying advanced hybrid multi-algorithm machine learning
models for the precise monitoring, prediction, and management of groundwater
salinization in the Caspian Sea region.

Materials and Methods

This study was conducted to accurately model groundwater salinity levels in the
coastal areas of the Caspian Sea. In the first step, groundwater quality data and
statistics from monitoring wells were obtained from the Mazandaran Regional
Water Company. Among the existing wells, only the Daryakenar observation well,
which possessed a long statistical record (twenty years) and had no missing data,
was selected as the primary sample for analysis. Salinity modeling was performed
using a hybrid machine learning-based approach. Within this framework, the
Support Vector Regression (SVR) model served as the principal predictive model.
To enhance its performance, the model’s tuning parameters were optimized and
calibrated through three global search optimization algorithms: Wavelet
Transform, innovative gunner Algorithm (AIG), and Particle Swarm Optimization
(PSO). This combination resulted in three hybrid models—SVR—-Wavelet, SVR—
innovative gunner Algorithm, and SVR-Particle Swarm—in which the
optimization algorithms were employed solely to accurately estimate the optimal
parameters of the main predictive model. Finally, the results of the models were
analyzed using standard performance evaluation metrics, including the Coefficient
of Determination (R?), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and the Nash—Sutcliffe Efficiency (NSE), and were presented
comprehensively in the form of tables and figures.

Results and Discussion

The results revealed that all three hybrid models exhibited superior performance in
structure No. 8 compared to other configurations, indicating that an increase in the
number of influential parameters within Support Vector Regression—based hybrid
models leads to enhanced model efficiency. Furthermore, the performance
evaluation criteria demonstrated that the SVR—Wavelet hybrid model achieved the
highest correlation coefficient (0.985), the lowest root mean square error
(RMSE = 0.206 ds/m), the lowest mean absolute error (MAE = 0.105 ds/m), and the
highest Nash—Sutcliffe efficiency (NSE=0.990) during the validation stage,
confirming its superior predictive capability. Overall, the findings highlight the
remarkable superiority of the Wavelet optimization algorithm when integrated with
the Support Vector Regression model. This hybrid structure not only substantially
improved prediction accuracy but also enhanced the reliability and stability of the
model. These outcomes underscore the strong potential of the proposed approach
in reducing uncertainty and improving modeling efficiency compared with other
examined techniques.

Conclusion

In this study, to accurately model groundwater salinity in the coastal zones of the
Caspian Sea, the Support Vector Regression (SVR) model was employed in
conjunction with three optimization algorithms: Wavelet, innovative gunner
Algorithm (AIG), and Particle Swarm Optimization (PSO). For modeling purposes,
the parameters bicarbonate (HCOs), sodium (Na), total hardness (TH), total
dissolved solids (TDS), magnesium (Mg), potassium (K), pH, and calcium (Ca)
were used as input variables, while electrical conductivity (EC)—representing
salinity—was considered the output variable. To construct the optimized hybrid
SVR model, 80% of the data were used for training, and the remaining 20% were
devoted to testing and validation. The findings, based on an evaluation of various
scenarios containing different input parameter combinations, revealed that in all
tested models, increasing the number of influential parameters led to improved
performance in estimating groundwater salinity. Moreover, according to the
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performance criteria, the SVR—Wavelet hybrid model exhibited higher accuracy
and minimal error, outperforming the other proposed models. Overall, the results
of this study demonstrate that artificial intelligence approaches based on Support
Vector Regression models can effectively be employed to estimate groundwater
quality using the available 20-year dataset, and that this methodology can be
extended to other regions of the country for practical water resource management

applications.
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Table 1 - Statistical Characteristics of The Qualitative Parameters Under Study

9!

033!

Flhl Training Testing
Parameter  pouwiwo orSleo oS Lo POVEI Sl Sk
Minimum  Mean  Maximum Minimum Mean  Maximum
Ca 1.2 5.09 9.2 1.2 4.43 9.2
Mg 1.2 3.67 9.3 1.2 3.39 9.3
Na 0.42 5.52 20.3 0.42 4.45 18.88
K 0.04 0.11 0.32 0.03 0.11 0.53
PH 6.8 7.47 8.4 6.8 7.59 83
TH 160 439.10 925 0 380.70 925
TDS 482 1221.82 9010 422 875.50 2272
HCO3 3.2 7.05 17.5 32 6.63 9.8
EC 720 1573.59 3500 610 1355.50 3500
2090 SN (§99)9 Wl 5 Y Jguxr
Table 2 - Input Combinations of The Models Under Study
o les 6399 9>
Number Input Output
1 Ca(t) EC(t)
2 Ca(t), Mg(t) EC(t)
3 Ca(t), Mg(t), Na(t) EC(t)
4 Ca(t), Mg(t), Na(t), K(t) EC(t)
5 Ca(t), Mg(t), Na(t), K(t), PH(t) EC(t)
6 Ca(t), Mg(t), Na(t), K(t), PH(t), TH(t) EC(t)
7 Ca(t), Mg(t), Na(t), K(t), PH(t), TH(t), TDS(t) EC(t)
8 Ca(t), Mg(t), Na(t), K(t), PH(t), TH(t), TDS(t), HCO3(t)  EC(t)
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Table 3 - Optimal Values of Support Vector Regression Model Tuning Parameters

Alghorithm t d 5
Wavelet 10 0.1 0.18
AlIG 10 0.1 0.22
BWO 10 0.2 0.25
FA 10 0.3 0.28

Joe 63959 Wl i iz sba s lw glas polio .F Jgux
Table 4. Error Values of Different Structures of Model Input Combinations

3T

To?".ﬂ Traini PLELN Joe
esting raining
RMSE(ds/m) RMSE(ds/m) Stracture Model

0.302 0.344 1

0.286 0.328 2

0.275 0.318 3

0.268 0.306 4

0.235 0.278 5 WSVR

0.228 0.264 6

0.217 0.257 7

0.206 0.242 8

0.217 0.352 1

0.293 0.337 2

0.286 0.326 3

0.277 0.312 4

0.247 0.288 5 AIG-SVR

0.236 0.275 6

0.225 0.268 7

0.211 0.257 8

0.314 0.363 1

0.306 0.347 2

0.295 0.336 3

0.283 0.323 4

0.256 0.297 5 PSO-SVR

0.244 0.286 6

0.237 0.274 7

0.225 0.263 8

s rdpe s @i 6 Jgua
Table 5. Results of The Models Studied
N 29!
Testing Training N Joe
MAE RMSE MAE RMSE Kernel Model

NS @gm)  (ds/m) R NS 4/m)  (ds/m) R
0.990 0.105 0.206 0.985 0.975 0.122 0.242 0.970 RBF
0.975 0.111 0.221 0.970 0.965 0.134 0.264 0.962 Poly WSVR
0.965 0.124 0.243 0.960 0.948 0.144 0.286 0.943 Line
0.980 0.110 0.211 0.975 0.965 0.125 0.257 0.960 RBF
0.970 0.118 0.237 0.965 0.955 0.138 0.278 0.951 Poly AIG-SVR
0.955 0.131 0.258 0.950 0.940 0.145 0.298 0.935 Line
0.960 0.117 0.225 0.960 0.955 0.136 0.263 0.950 RBF
0.950 0.128 0.248 0.945 0.945 0.148 0.288 0.940 Poly PSO-SVR
0.935 0.137 0.266 0.935 0.930 0.156 0.306 0.920 Line
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Fig 4. Time Series Diagram of The Models Under Study
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