Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M.F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., Chau, K.W. (2020). Groundwater Quality Assessment for Sustainable Drinking and Irrigation. Sustainability, 12, 177 190.https://doi.org/10.3390/su12010177
Babaali, H.R., Nohani, E., Dehghani, R.(2024).Assessment of Groundwater Hardness in Khorramabad Plain Using Hybrid Models Based on Metaheuristic Algorithms. Journal of Aquifer and Qanat, 5(1),125-138. 10.22077/jaaq.2025.8579.1083 .(In Persian)
Basak, D., Pal, S., and Patranabis, D.C.(2007). Support vector regression. Neural Inf Process. 11(2), 203-225.10.12691/jgg-2-3-9
Boluda-Botella, N., Gomis-Yagües, V., Ruiz-Beviá, F. (2008). Influence of transport parameters and chemical properties of the sediment in experiments to measure reactive transport in seawater intrusion. Journal of Hydrology, 357, 29–41. https://doi.org/10.1016/j.jhydrol.2008.04.021
Crestani, E., Camporese, M., Salandin, P. (2019). Technical note: an alternative approach to laboratory benchmarking of saltwater intrusion in coastal aquifers. Hydrology and Earth System Sciences,12(3), 1–18.https://doi.org/10.5194/hess-2019-127
Dehghani, R., Chamanpira, R. (2025).Metaheuristic-optimized SVR models for daily streamflow forecasting in the Karkheh River Basin, Iran.Desalination and Water Treatment, 324, 446-457.https://doi.org/10.1016/j.dwt.2025.101446
Eberhart R., Kennedy J. (1995). A New Optimizer Using Particle Swarm Theory Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, Piscataway, NJ: IEEE Service Center, 6, 39-43.10.1109/MHS.1995.494215
Ibrahim, H., Yaseen, Z.M., Scholz, M., Ali, M., Gad, M., Elsayed, S., Khadr, M., Hussein, H., Ibrahim, H.H., Eid, M.H. (2023). Evaluation and Prediction of Groundwater Quality for Irrigation Using an Integrated Water Quality Indices, Machine Learning Models, and GIS Approaches: A Representative Case Study. Water, 15, 694-712. https://doi.org/10.3390/w15040694
Jalalkamali, A., JalalKamali, N. (2018). Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction of Groundwater Quality Indices: a GIS-based Analysis. Journal of Artificial Intelligence & Data Mining, 6(2), 439-445. https://doi.org/10.22044/jadm.2017.1086
Kisi, O., Karahan, M., Sen, Z. (2006). River suspended sediment modeling using a fuzzy logic approach. Hydrological Processes, 20(2), 4351-4362.10.1002/hyp.6166
Nohani, E., Babaali, H.R., Dehghani, R.(2024).Evaluation of metaheuristic models in groundwater level analysis of Delfan Plain, Lorestan. Journal of Aquifer and Qanat, 5(2),79-98. 10.22077/jaaq.2025.8834.1096.(In Persian)
Nohani, E., Babaali, H.R., Dehghani, R.(2025).The Impact of Climate Change Parameters on Groundwater Level Decline (Case Study: Kuhdasht-Lorestan). Journal of Aquifer and Qanat, 6(1),87-106. 10.22077/jaaq.2025.9841.1119.(In Persian)
Norouzi Khatiri, K., Nematollahi, B., Hafeziyeh, S., Niksokhan, M.H., Nikoo, M.R., Al-Rawas, G. (2023).Groundwater Management and Allocation Models: A Review. Water, 15, 253-270.https://doi.org/10.3390/w15020253.
Pijarski, P., & Kacejko, P. (2019). A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG). Engineering Optimization, 51(12), 2049-2068.10.1080/0305215X.2019.1565282
Rajaee, T., Khani, S., Ravansalar, M. (2022). Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review.Chemometrics and Intelligent Laboratory Systems, 200(3), 1039-1055.https://doi.org/10.1016/j.chemolab.2020.103978
Robinson, G., Moutari, S., Ahmed, A.A., Hamill, G.A. (2018). An advanced calibration method for image analysis in laboratory-scale seawater intrusion problems. Water Resources Management, 32, 3087–3102.https://doi.org/10.1007/s11269-018-1977-6
Roy, D.K., Sarkar, T.K., Munmun, T.H. (2025). A review on the applications of machine learning and deep learning to groundwater salinity modeling: present status, challenges, and future directions. Discover Water 5, 16-31. https://doi.org/10.1007/s43832-025-00207-z
Shin, S., Kyung, D., Lee, S., Taik, & Kim, J., Hyun, J. (2005). An application of support vector machines in a bankruptcy prediction model. Expert Systems with Applications, 28(4), 127-135. https://doi.org/10.1016/j.eswa.2004.08.009
Shrivatava, M., Prasad, V., Khare, R.(2015). Multi-objective optimization of water distribution system using particle swarm optimization. IOSR Journal of Mechanical and Civil Engineering, 12(1), 21–28. 10.9790/1684-12612128
Smith, A., Johnson, M., & Yılmaz, E. (2020). Evaluation of hybrid support vector regression-grey wolf optimizer algorithm for river salinity estimation: A case study on the Johns River, Turkey. Journal of Contaminant Hydrology, 235, 371-382. https://doi.org/10.1016/j.jconhyd.2020.103715
Vapnik, V., Chervonenkis, A.1991. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3), 283-305.10.12691/jgg-2-3-9
Wang, D., Safavi, A.A., and Romagnoli, J.A.(2000). Wavelet-based adaptive robust M-estimator for non-linear system identification. AIChE Journal, 46(4), 1607-1615. https://doi.org/10.1002/aic.690460812
Yadav, B., Mathur, S., Ch, S., Yadav, B.K. (2018). Data-based modelling approach for variable density flow and solute transport simulation in a coastal aquifer. Hydrological Sciences Journal, 63, 210–226.https://doi.org/10.1080/02626667.2017.1413491
Yamamoto, T., & Kuroki, S. (2023). A comparative analysis of bio-inspired optimization algorithms (AEO, GWO, COA) for tuning SVR parameters in groundwater salinity prediction. Agricultural Water Management, 284, 108333. https://doi.org/10.1016/j.agwat.2023.108333
Yousefi, S., Avand, M., Yariyan, P., Pourghasemi, H.R., Keesstra, S., Tavangar, S., Tabibian, S. (2020). A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator of change. Ecological Indicators, 117, 106591.https://doi.org/10.1016/j.ecolind.2020.106591
Yu, X., Xin, P., Lu, C. (2019). Seawater intrusion and retreat in tidally-affected unconfined aquifers: Laboratory experiments and numerical simulations. Advances in Water Resources, 132, 103393.https://doi.org/10.1016/j.advwatres.2019.103393
Zeidalinejad, N., Dehghani, R.(2023). Use of meta-heuristic approach in the estimation of the aquifer's response to climate change under shared socioeconomic pathways. Groundwater for Sustainable Development, 20(4), 112-132. https://doi.org/10.1016/j.gsd.2022.100882