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Groundwater resource management has faced various environmental
Revise Date challenges over the past two decades. In this context, the use of vulnerability
15 October 2025 indices to assess the status of groundwater resources against pollution and
potential risks has gained significant importance. One of the prominent
Accept Date indices in this regard is the DRASTIC index, designed to assess the
18 October 2025 vulnerability of groundwater resources to pollution (Aller, 1987).
Vulnerability is defined based on the likelihood of pollution in groundwater
Keywords: resources, which can be calibrated using qualitative or quantitative pollution

Vulnerability,

arameters to improve the accuracy of identifying areas suitable for
Exploitation Risk, p P y ying

Drastic Index, de.Ve!opment (Azizi et 2}1., 2020). This study aims. to.enha.nce .the accuracy of

Index Calibration, this index by introducing the cqncept of eprO}tatlon risk in groundwa}ter

Nitrate Concentration. resources as a factor for calibration and increasing the precision of aquifer
vulnerability assessments. The concept of exploitation risk is defined based
on three parameters: nitrate concentration, land-use changes, and well density
for water extraction, and is analyzed using machine learning and fuzzy
methods. The primary goal of this research is to use this new concept to
improve the accuracy of groundwater vulnerability assessments.
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Materials and Methods

Materials and Methods

The study area for this research is the Lahijan-Fumanat aquifer, located in the southern part of the Caspian
Sea. This region is recognized as one of the main water sources due to its unique climatic and geological
features. In this area, groundwater exploitation has increased significantly, making it essential to assess
the vulnerability of the aquifer accurately. In this study, the DRASTIC index is used to evaluate the
vulnerability of the aquifer, and then, using the concept of exploitation risk, parameters related to land-
use changes, nitrate concentration, and water resource density are analyzed fuzzily.

The use of the risk concept in evaluating groundwater resources is important from two perspectives:
accurately assessing potential quantitative and qualitative changes, and considering variables and the
uncertainty of these variables. Different models are employed to calculate the risk, using two concepts:
probability x hazard. This simple and practical formula allows us to evaluate risk based on two key
components: the likelihood of an event occurring and the severity or risk of that event.

R=PxH (1

Where R is risk, P is the probability of a specific event occurring, and H is the hazard or severity of the
consequences of that event.

In this context, the concept of exploitation risk is based on three factors: nitrate concentration (as a
qualitative parameter for the DRASTIC index), land-use changes, and water resource density, analyzed
using fuzzy logic. Nitrate is used to represent pollutants created by humans, land-use changes represent
alterations in the environment, and water resource density indicates the potential for exploitation.

This study employs a machine learning approach to calibrate the weights and ranks of the DRASTIC
vulnerability index. Accordingly, the ANFIS simulation method is integrated with two optimization
techniques, Grey Wolf Optimization (GWO) and Emperor Penguin Optimization (EO), for calibration.
Based on the initial conditions of the DRASTIC weights and ranks, the correlation between the results
of this index and nitrate concentration was calculated. In machine learning models, the qualitative risk
classification and qualitative parameters are considered independent variables, while the weights and
ranks considered in the optimization model are treated as decision variables, with the vulnerability index
as the dependent variable. If the correlation is low, machine learning methods are employed with the
objective function to maximize the correlation between the vulnerability index and the nitrate
concentration.

Results

The calculated DRASTIC index value indicates the level of aquifer sensitivity to pollution, where larger
values signify a greater potential for groundwater contamination. The highest levels of sensitivity and
vulnerability were found in the northern and northwestern parts of the aquifer, while the southern and
eastern parts showed the lowest levels of vulnerability. The analysis of vulnerability in these areas is
consistent with the land use, which is predominantly focused on agricultural activities and urban
development.(Akpan et al., 2015; Bordbar et al., 2024; Water | Free Full-Text | Groundwater
Vulnerability Assessment to Cemeteries Pollution through GIS-Based DRASTIC Index, n.d.).
Additionally, the results showed that 22.6% of the aquifer falls into the high vulnerability class, indicating
it is sensitive to development. The DRASTIC vulnerability index results indicated that the northern part
of the aquifer is more vulnerable compared to other areas, and this is also reflected in the depth of
groundwater and the aquifer's composition from various aspects, such as soil, aquifer environment, and
unsaturated zone.(Guo et al., 2023). This region has a higher degree of agricultural development and
urbanization, and therefore, the results align well with the actual ground realities.

The defined values for the nitrate membership function were based on the membership function at two
values: f1 (Spread) and f2 (Midpoint), as shown in Table 1. A nitrate concentration higher than 10 mg/L
starts with a membership of 5%, and up to a concentration of 30 mg/L, it is defined as the final limit with
a 100% membership. The land-use changes in the region were defined as follows: a 20% change in the
removal of natural land and the addition of agricultural or urban land was considered the midpoint, and
after a 40% land-use change, the maximum membership (100%) was calculated. A land-use change of
more than 40% was introduced as the maximum risk value. The water resource density in the region,
considering the volume of exploitation from both surface and groundwater resources relative to the
aquifer area, was calculated dimensionally. An increase in this density indicates an exploitation pressure.
The average density was calculated as 25%, and the upper limit of this density was calculated as more
than 30%. By integrating these three membership functions spatially, the exploitation risk was calculated.
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Table (1) - Membership Function Values for the Three Parameters of Exploitation Risk

Parameters F1 - Spread F» - Midpoint F»- patterns
Nitrate 20 0.35 20 ppm
Land use 40% 27% 20%
Water resource density 0.2 0.6 0.25

The results of this study showed that the use of the concept of exploitation risk, particularly with respect
to three parameters—nitrate concentration, land-use changes, and well density—significantly improved
the accuracy of the DRASTIC index results. The correlation between the DRASTIC index and
exploitation risk increased from 0.35 to 0.75 after calibration. This improvement in the accuracy of the
indices indicates that the use of machine learning models, especially the ANFIS-EO model, has provided
better results in evaluating the vulnerability of groundwater resources. Furthermore, the results showed
that the northern and northwestern parts of the aquifer have higher sensitivity compared to other regions
due to increased nitrate concentrations caused by agricultural development and population concentration.
Parametric analyses revealed that six out of the seven parameters of the DRASTIC index had increased
weight, leading to significant changes in the rankings.

Conclusion

The use of the concept of exploitation risk as an innovative tool for calibrating vulnerability indices can
significantly improve the accuracy and efficiency of these indices. In this study, using this concept greatly
improved the correlation between the DRASTIC index and the level of exploitation risk, and the results
showed better alignment with the actual conditions of vulnerable areas. Additionally, the use of machine
learning models, especially ANFIS-EO, provided favorable results in calibrating vulnerability indices
and reduced uncertainty in the analyses. Overall, this research emphasizes the necessity of using modern
approaches and combining various concepts, such as exploitation risk and vulnerability, in the assessment
of groundwater resources. It can serve as a guide for better management decisions in protecting
groundwater resources.
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Table 6. Sensitivity Analysis Results of The Calibrated DRASTIC Index.
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