Bagheri, H., Abyaneh, H. Z., Izady, A., & Brusseau, M. L. (2019). Modeling the transport of nitrate and natural multi-sized colloids in natural soil and soil amended with vermicompost. Geoderma, 354, 113889. https://doi.org/10.1016/j.geoderma.2019.113889
Bagheri, H., Zare Abianeh, H., Izadi, A., and Bagheri, H. (2024). Simulation of the effect of vermicompost on the transport of reactive sodium in saturated and near-saturated soil. Iranian Water Research Journal, 17(4). https://doi.org/10.22034/iwrj.2023.14379.2524. (In Persian)
Batany, S., Peyneau, P. E., Lassabatère, L., Béchet, B., Faure, P., & Dangla, P. (2019). Interplay between molecular diffusion and advection during solute transport in macroporous media. Vadose Zone Journal, 18(1), 1-15. https://doi.org/10.2136/vzj2018.07.0140
Bear, J. (2013). Dynamics of fluids in porous media. Courier Corporation.
Bear, J., & Braester, C. (1972). On the flow of two immiscible fluids in fractured porous media. In Developments in soil science (Vol. 2, pp. 177-202). Elsevier.
Bear, J., & Cheng, A. H. D. (2010). Modeling groundwater flow and contaminant transport (Vol. 23, p. 834). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-6682-5
Finkel, M., Grathwohl, P., & Cirpka, O. A. (2016). A travel time‐based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies. Water Resources Research, 52(12), 9390-9411. https://doi.org/10.1002/2016WR019147
Florido, A., Valderrama, C., Arévalo, J. A., Casas, I., Martínez, M., & Miralles, N. (2010). Application of the site's non-equilibrium sorption model for the removal of Cu (II) onto grape stalk wastes in a fixed-bed column. Chemical Engineering Journal, 156(2), 298-304. https://doi.org/10.1016/j.cej.2009.10.020
Freeze, R. A., & Cherry, J. A. (1979). Groundwater prentice. Englewood Cliffs, Englewood Cliffs.
Jellali, S., Diamantopoulos, E., Kallali, H., Bennaceur, S., Anane, M., & Jedidi, N. (2010). Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes. Journal of Environmental Management, 91(4), 897-905. https://doi.org/10.1016/j.jenvman.2009.11.006
Lee, S., Kim, D. J., & Choi, J. W. (2012). Comparison of first-order sorption kinetics using the concept of the two-site sorption model. Environmental Engineering Science, 29(11), 1002-1007. https://doi.org/10.1089/ees.2011.0301
Li, Q., LI, F., ZHANG, Q., QIAO, Y., Du, K., Zhu, N.,... & HE, X. (2021). Water and salt transport simulation in the wheat growing area of the North China Plain based on the HYDRUS model. Chinese Journal of Eco-Agriculture, 29(6), 1085-1094. https://doi.org/10.13930/j.cnki.cjea.200828
Murphy, N. P., Furman, A., Moshe, S. B., & Dahlke, H. E. (2024). Comparison of reactive transport and non-equilibrium modeling approaches for the estimation of nitrate leaching under large water application events. Journal of Hydrology, 628,30583. https://doi.org/10.1016/j.jhydrol.2023.130583
Rezaei, E., Zeinalzadeh, K., & Ghanbarian, B. (2021). Effects of particle shape and size distribution on hydraulic properties of grain packs: An experimental study. arXiv preprint arXiv:2111.01288. https://doi.org/10.48550/arXiv.2111.01288
Shekhar, S., Mailapalli, D. R., & Raghuwanshi, N. S. (2024). Simulation and optimization of ponding water and nutrient management in rice irrigated with alternate wetting and drying practice under a humid subtropical region in India. Paddy and Water Environment, 22(1), 189-207. https://doi.org/10.1007/s10333-023-00961-7
Simunek, J., & van Genuchten, M. T. (2008). Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose zone journal, 7(2), 782-797. https://doi.org/10.2136/vzj2007.0074
Simunek, J., Brunetti, G., Jacques, D., van Genuchten, M. T., & Šejna, M. (2024). Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone Journal, 23(4), e20310. https://doi.org/10.1002/vzj2.20310
Simunek, J., Van Genuchten, M. T., & Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.
Simunek, J., Van Genuchten, M. T., & Šejna, M. (2016). Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), vzj2016-04. https://doi.org/10.2136/vzj2016.04.0033
Syafiuddin, A., Boopathy, R., & Hadibarata, T. (2020). Challenges and solutions for sustainable groundwater usage: Pollution control and integrated management. Current Pollution Reports, 6, 310-327. https://doi.org/10.1007/s40726-020-00167-z
Urdiales, C., Urdiales-Flores, D., Tapia, Y., Cáceres-Jensen, L., Šimůnek, J., & Antilén, M. (2025). Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model. Journal of Hazardous Materials, 487, 137077. https://doi.org/10.1016/j.jhazmat.2024.137077
Wang, S., Huang, L., Zhang, Y., Li, L., & Lu, X. (2021). A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects. Chinese Journal of Chemical Engineering, 31, 153-163. https://doi.org/10.1016/j.cjche.2020.11.018
Yu, H., Li, C., Yan, J., Ma, Y., Zhou, X., Yu, W.,... & Dong, P. (2023). A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC advances, 13(6), 3505-3519. https://doi.org/10.1039/D2RA07095