In collaboration Iranian Hydraulic Association

Document Type : Original Article

Authors

1 Department, of Water Engineering Faculty of Agriculture, University of Birjand, Birjand.Iran.

2 Faculty member, Water Engineering Department, Faculty of Agriculture, University of Birjand

10.22077/jaaq.2025.9090.1106

Abstract

Rainfall-runoff modeling is one of the key tools in hydrology to determine flood characteristics such as the amount and time of peak discharge.The IHACRES model parameters were calibrated using the objective function to maximize the Nash-Sutcliffe index. The simulation values of peak flow rate and peak flow time were calibrated and validated using the Ns and R2 evaluation criteria. In the ARMAX method, it was 0.79 and 0.85, which indicates the acceptable performance of simulating peak discharge values and the time to reach peak discharge in the ARMAX method. In the validation stage, the values of the evaluation criteria in the ARMAX method were estimated to be 0.54 and 0.64, respectively, which indicates that the ARMAX method has a desirable performance. Overall, the research results indicate that the results obtained from the IHACRES model in the study area, using the ARMAX method, have had an accurate performance.

Keywords

Main Subjects

Abushandi, E., & Merkel, B. (2013). Modelling rainfall runoff relations using HEC-HMS and IHACRES for a single rain event in an arid region of Jordan. Water resources management, 27, 2391-2409. https://doi.org/10.1007/s11269-013-0293-4
Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., & Zehtabiyan, G. R. (2019). Comparison of the performance of SWAT, IHACRES, and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Physics and Chemistry of the Earth, Parts A/B/C, 111, 65-77. https://doi.org/10.1016/j.pce.2019.05.002
Ayele, G. T., Teshale, E. Z., Yu, B., Rutherfurd, I. D., & Jeong, J. (2017). Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, EthiopiaWater9(10), 782. https://doi.org/10.3390 / w9100782
Baddoo, T. D., Li, Z., Guan, Y., Boni, K. R. C., & Nooni, I. K. (2020). Data-driven modeling and the influence of objective function selection on model performance in limited data regions. International Journal of Environmental Research and Public Health, 17(11), 4132. https://doi.org/10.3390/ijerph17114132
Box, G., & Jenkins, G. (1970). Time Series Analysis-Forecasting and Control. San Francisco: Holden Day. 553 p. https://doi.org/10.2307/1402374
Dailari, M., Darbandi, S., Asadi, E., & Samadian, M. (2021). Simulation of effective parameters on river flow discharge trend using HACRES rainfall-runoff model in future periods (Case study: Zolachai River). Echo Hydrology 8 (1): 177-193. Persian with English abstract. https://doi.org/10.22059/ije.2021.311773.1394 [Persian]
Dooge, J. (1973). Linear theory of hydrologic systems (No. 1468). Agricultural Research Service, US Department of Agriculture..
Dye, P. J., & Croke, B. F. W. (2003). Evaluation of Streamflow Predictions by the IHACRES Rainfall-Runoff Model in Two South African Catchments Environmental Modelling and Software, 18. https://doi.org/10.1016/S1364-8152(03)00072-0
Javan, Khadijeh, and Mahdi Erfanian. "Assessing the impact of climate change on the drought status in Tabriz station during future periods using LARS-WG." Iranian Water Researches Journal 14.3 (2020): 97. https://sid.ir/paper/952843/en
Fenta Mekonnen, D., & Disse, M. (2018). Analyzing the future climate change of the Upper Blue Nile River basin using statistical downscaling techniques. Hydrology and Earth System Sciences, 22(4), 2391-2408. https://doi.org/10.5194/hess-22-2391-2018
Food Surveys Research Group. (2014). Agricultural Research Service, US Department of Agriculture. USDA National Nutrient Database for Standard Reference, Release 27.
Godarzie, M., B. Motamed Vasari, and M. Mir Hosseini. "Evaluation of Application of IHACRES Model for Simulation of Surface Runoff under Climate Change (Case Study: Can Watershed)." The Journal of Watershed Management Science and Engineering of Iran 11.38 (2017): 83-94. https://dor.isc.ac/dor/20.1001.1.23833254.1398.6.20.10.3 [Persian]
Ghorbani Kh. 1394. Evaluation of data mining models in exponential precipitation microscale based on NCEP public circulation model data, Case study: Kermanshah synoptic station.Iranian Journal of Water Research 2015; pp. https://doi.org/10.22059/ije.2021.311773.1394. [Persian].
Hafezparast, M., & Marabi, S. (2021). Prediction of discharge using artificial neural network and IHACRES models due to climate change. Journal of Renewable Energy and Environment, 8(3), 75-85. https://doi.org/10.30501/jree.2021.257941.1162. [Persian]
Hope, A., J. Decker, and P. Jankowski. "Daily River Flow Predictions in Southern California Catchments Using the IHACRES Model and Gridded Rainfall Input Data." AGU Fall Meeting Abstracts. Vol. 2006. 2006. https://doi.org/10.1111/j.1752-1688.2008.00172.x
Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, 233(1-4), 138-153 https://doi.org/10.1016/S0022-1694(00)00228-6
Jakeman, A. J., Littlewood, I. G., & Whitehead, P. G. (1990). Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117(1-4), 275-300.https://doi.org/10.1016/0022-1694(90)90097-H
Karami, F., & Bayati Khatibi, M. (2019). Modeling soil erosion and sediment yield prioritization in Satar Khan Watershed using MUSLE and SWAT models. The Journal of Hydro geomorphology, 15(18), 115-137. https://dor.isc.ac/dor/20.1001.1.23833254.1398.6.18.7.6. [Persian]
Karimi, M., Kaki, S., & Rafati, S. (2018). Iran's future climate conditions and hazards in climate research. Journal of Spatial Analysis Environmental hazards, 5(3), 1-22.. https://sid.ir/paper/381121/en. [Persian]
Karamoz M. Iraqi Nejad Sh. Advanced Hydrology. Amirkabir University Press. Tehran;2005. pp.464. https://doi.org/10.22059/ije.2021.311773.1394 .[Persian]
Kim, H. S., et al. "An assessment of modelling capacity to identify the impacts of climate variability on catchment hydrology." Mathematics and computers in simulation 81.7 (2011): 1419-1429. https://doi.org/10.1016/j.matcom.2010.05.007
Koukidis, E. N., & Berg, A. A. (2009). Sensitivity of the Statistical Downscaling Model (SDSM) to reanalysis products. Atmosphere-Ocean, 47(1), 1-18. https://doi.org/10.3137/AO924.2009
Lotfirad, M., Adib, A., & Haghighi, A. (2018). Estimation of daily runoff using the semi-conceptual rainfall-runoff IHACRES model in the Navrood watershed (a watershed in the Gilan province. Iranian Journal of Ecohydrology, 5(2), 449-460. https://doi.org/10.22059/ije.2017.234237.614. [Persian]
Massah Bovani, A, & Murid, S. (2005). Effects of Climate Change on the Zayandehrood River in Isfahan. Agricultural Science and Technology and Natural Resources, 4(9), 17-27. https://dor.isc.ac/dor/20.1001.1.24763594.1384.9.4.4.8 [Persian]
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. doi: 10.13031/2013.23153) @2007
Mousavi Baygi, M., Alizadeh, A., Mosaedi, A., & Jabbari Nooghabi, M. (2020). Development of Weather Meteorological Drought Forecast Model (Case Study: Sub-basin Effin Watershed)Water and Soil, 33(6), 943-958. https://doi.org/10.22067/jsw.v33i6.81650 [Persian]
Osman, Y., Al-Ansari, N., Abdellatif, M., Aljawad, S. B., & Knutsson, S. (2014). Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering, 6(13), 948-959.https://doi.org/10.1007 / s00704-024-04891-0
Rezaei Moghaddam, Mohammad Hossein, Mir Asadolah Hejazi, and Abdollah Behbuodi. "A Calibration and Dvaluation of IHACRES Model in Runoff Simulation the Lanbaran Sub-basin, Ahar Chay." Hydrogeomorphology 6.20 (2019): 187-204. https://dor.isc.ac/dor/20.1001.1.23833254.1398.6.20.10.3.[Persian]
Sadeghi, S. H., Ghasemieh, H., & Sadatinegad, S. J. (2015). Performance evaluation of the IHACRES hydrological model in wet areas (case study: Navrud basin, Gillan). Journal of Water and Soil Science 19(73):73-83. https://doi.org/10.18869/acadpub.jstnar.19.73.73. (In Persian with English abstract)
Sarraf, A., & Ghasemi, H. (2021). Calibration of the IHACRES hydrological model using multi-objective social spider optimization and search and rescue algorithms. Hydrogeomorphology. Persian with English abstract. [Persian]
Sood, A., & Smakhtin, V. (2015). Global hydrological models: a review. Hydrological Sciences Journal, 60(4), 549-565. https://doi.org/10.1080/02626667.2014.950580.
Vaze, J., et al. "Climate non-stationarity–validity of calibrated rainfall–runoff models for use in climate change studies." Journal of Hydrology 394.3-4 (2010): 447-457. https://doi.org/10.1016/j.jhydrol.2010.09.018.
Yaghoubi, M., & MASSAH, B. A. (2014). Sensitivity analysis and comparison of the capability of three conceptual models, HEC-HMS, HBV, and IHACRES, in simulating continuous rainfall-runoff in semi-arid basins. https://sid.ir/paper/80432/en. [Persian].