Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water resources research, 45(10).
Barros, R. C., Basgalupp, M. P., De Carvalho, A. C., & Freitas, A. A. (2011). A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(3), 291-312.
Bhavsar, H., & Panchal, M. H. (2012). A review on support vector machine for data classification. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1(10), 185-189.
Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28.
Deepika, B., Avinash, K., & Jayappa, K. S. (2013). Integration of hydrological factors and demarcation of groundwater prospect zones: insights from remote sensing and GIS techniques. Environmental earth sciences, 70, 1319-1338.
Dong, H., Yang, L., & Wang, X. (2021). Robust semi-supervised support vector machines with Laplace kernel-induced correntropy loss functions. Applied Intelligence, 51, 819-833.
Eftekhari, M., Madadi, K., & Akbari, M. (2019). Monitoring the fluctuations of the Birjand Plain aquifer using the GRACE satellite images and the GIS spatial analyses. Watershed Management Research Journal, 32(4), 51-65.
Eslaminezhad, S. A., Eftekhari, M., Azma, A., Kiyanfar, R., & Akbari, M. (2022). Assessment of flood susceptibility prediction based on optimized tree-based machine learning models. Journal of Water and Climate Change, 13(6), 2353-2385.
Ferreira, C. S. S., Walsh, R. P. D., Steenhuis, T. S., Shakesby, R. A., Nunes, J. P. N., Coelho, C. O. A., & Ferreira, A. J. D. (2015). Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. Journal of Hydrology, 525, 249-263.
Foster, S., Chilton, J., Nijsten, G. J., & Richts, A. (2013). Groundwater—a global focus on the ‘local resource’. Current opinion in environmental sustainability, 5(6), 685-695.
Genuer, R., Poggi, J. M., Genuer, R., & Poggi, J. M. (2020). Random forests (pp. 33-55). Springer International Publishing.
Guido, J. J., Winters, P. C., & Rains, A. B. (2006). Logistic regression basics. MSc University of Rochester Medical Center, Rochester, NY, 21.
Hilario, M., Kalousis, A., Pellegrini, C., & Müller, M. (2006). Processing and classification of protein mass spectra. Mass spectrometry reviews, 25(3), 409-449.
Hussein, A. A., Govindu, V., & Nigusse, A. G. M. (2017). Evaluation of groundwater potential using geospatial techniques. Applied Water Science, 7, 2447-2461.
Li, H., Zhao, X., Gao, X., Ren, K., & Wu, P. (2018). Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 558, 432-441.
Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.
Matin, S. S., Farahzadi, L., Makaremi, S., Chelgani, S. C., & Sattari, G. H. (2018). Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Applied Soft Computing, 70, 980-987.
Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental science & technology, 46(17), 9224-9239.
Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74-78.
Rai, K., Devi, M. S., & Guleria, A. (2016). Decision tree based algorithm for intrusion detection. International Journal of Advanced Networking and Applications, 7(4), 2828.
Sanaeinejad et al. (2014), Wheat yield estimation using Landsat images and field observation: A case study in Mashhad. J. of Plant Production, Vol. 20 (4), 2014.
Sansone, M., Fusco, R., Pepino, A., & Sansone, C. (2013). Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. Journal of healthcare engineering, 4, 465-504.
Tashayo, B., Honarbakhsh, A., Akbari, M., & Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi-arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 19(5), 332-338.
Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), 3482.
Xiong, L., Tang, G., Yan, S., Zhu, S., & Sun, Y. (2014). Landform‐oriented flow‐routing algorithm for the dual‐structure loess terrain based on digital elevation models. Hydrological Processes, 28(4), 1756-1766.
Yaman, A., & Cengiz, M. A. (2021). The Effects of Kernel Functions and Optimal Hyperparameter Selection on Support Vector Machines. Journal of New Theory, (34), 64-71.
Yenehun, A., Nigate, F., Belay, A. S., Desta, M. T., Van Camp, M., & Walraevens, K. (2020). Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of Ethiopia. Science of The Total Environment, 748, 142243.
Zhu, F., Tang, M., Xie, L., & Zhu, H. (2018). A classification algorithm of CART decision tree based on MapReduce attribute weights. International Journal of Performability Engineering, 14(1), 17.
Ziegler, A., & König, I. R. (2014). Mining data with random forests: current options for real‐world applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(1), 55-63.